Rsearch on Heat Conduction with Freezing : 1st Report; Numerical Method on Stefan's Problem
نویسندگان
چکیده
منابع مشابه
A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions
This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...
متن کاملSolving an Inverse Heat Conduction Problem by Spline Method
In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...
متن کاملA Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions
This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...
متن کاملa numerical solution for an inverse heat conduction problem
in this paper, we demonstrate the existence and uniqueness a semianalytical solution of an inverse heat conduction problem (ihcp) in the form: ut = uxx in the domain d = {(x, t)| 0 < x < 1, 0 < t t}, u(x, t) = f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 t t. some numerical experiments are given in the final section.
متن کاملTwo numerical methods for solving a backward heat conduction problem
We introduce a central difference method and a quasi-reversibility method for solving a backward heat conduction problem (BHCP) numerically. For these two numerical methods, we give the stability analysis. Meanwhile, we investigate the roles of regularization parameters in these two methods. Numerical results show that our algorithm is effective. 2005 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of JSME
سال: 1975
ISSN: 0021-3764,1881-1426
DOI: 10.1299/jsme1958.18.41